
Software Engineering Note

Yogeswari Magar

Lecturer ,CSE

Module

1

Introduction to Software

Engineering

Basic Issues in Software

Engineering

Specific Instructional Objectives

At the end of this lesson the student will be able to:

• Identify the scope and necessity of software engineering.

• Identify the causes of and solutions for software crisis.

• Differentiate a piece of program from a software product.

Scope and necessity of software engineering

Software engineering is an engineering approach for software development. We
can alternatively view it as a systematic collection of past experience. The
experience is arranged in the form of methodologies and guidelines. A small
program can be written without using software engineering principles. But if one
wants to develop a large software product, then software engineering principles
are indispensable to achieve a good quality software cost effectively. These
definitions can be elaborated with the help of a building construction analogy.

Suppose you have a friend who asked you to build a small wall as shown in fig.
1.1. You would be able to do that using your common sense. You will get
building materials like bricks; cement etc. and you will then build the wall.

Fig. 1.1: A Small Wall

But what would happen if the same friend asked you to build a large multistoried
building as shown in fig. 1.2?

Fig. 1.2: A Multistoried Building

You don't have a very good idea about building such a huge complex. It would
be very difficult to extend your idea about a small wall construction into
constructing a large building. Even if you tried to build a large building, it would
collapse because you would not have the requisite knowledge about the
strength of materials, testing, planning, architectural design, etc. Building a
small wall and building a large building are entirely different ball games. You
can use your intuition and still be successful in building a small wall, but
building a large building requires knowledge of civil, architectural and other
engineering principles.

Without using software engineering principles it would be difficult to develop
large programs. In industry it is usually needed to develop large programs to
accommodate multiple functions. A problem with developing such large
commercial programs is that the complexity and difficulty levels of the programs
increase exponentially with their sizes as shown in fig. 1.3. For example, a
program of size 1,000 lines of code has some complexity. But a program with
10,000 LOC is not just 10 times more difficult to develop, but may as well turn
out to be 100 times more difficult unless software engineering principles are
used. In such situations software engineering techniques come to rescue.
Software engineering helps to reduce the programming complexity. Software
engineering principles use two important techniques to reduce problem
complexity: abstraction and decomposition.

Fig. 1.3: Increase in development time and effort with problem size

The principle of abstraction (in fig.1.4) implies that a problem can be simplified
by omitting irrelevant details. In other words, the main purpose of abstraction is
to consider only those aspects of the problem that are relevant for certain
purpose and suppress other aspects that are not relevant for the given purpose.
Once the simpler problem is solved, then the omitted details can be taken into
consideration to solve the next lower level abstraction, and so on. Abstraction is
a powerful way of reducing the complexity of the problem.

The other approach to tackle problem complexity is decomposition. In this
technique, a complex problem is divided into several smaller problems and then
the smaller problems are solved one by one. However, in this technique any
random decomposition of a problem into smaller parts will not help. The
problem

has to be decomposed such that each component of the decomposed problem
can be solved independently and then the solution of the different components
can be combined to get the full solution. A good decomposition of a problem as
shown in fig.1.5 should minimize interactions among various components. If the
different subcomponents are interrelated, then the different components cannot
be solved separately and the desired reduction in complexity will not be
realized.

3rd abstraction

2nd
abstraction

1st abstraction

Full Problem

Fig. 1.4: A hierarchy of
abstraction

Fig. 1.5: Decomposition of a large problem into a set of smaller problems.

Causes of and solutions for software crisis.

Software engineering appears to be among the few options available to tackle
the present software crisis.

To explain the present software crisis in simple words, consider the following.
The expenses that organizations all around the world are incurring on software
purchases compared to those on hardware purchases have been showing a

worrying trend over the years (as shown in fig. 1.6)

Fig. 1.6: Change in the relative cost of hardware and software over time

Organizations are spending larger and larger portions of their budget on
software. Not only are the software products turning out to be more expensive
than hardware, but they also present a host of other problems to the customers:
software products are difficult to alter, debug, and enhance; use resources non-
optimally; often fail to meet the user requirements; are far from being reliable;
frequently crash; and are often delivered late. Among these, the trend of
increasing software costs is probably the most important symptom of the
present software crisis. Remember that the cost we are talking of here is not on
account of increased features, but due to ineffective development of the product
characterized by inefficient resource usage, and time and cost over-runs.

There are many factors that have contributed to the making of the present
software crisis. Factors are larger problem sizes, lack of adequate training in
software engineering, increasing skill shortage, and low productivity
improvements.

It is believed that the only satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
engineers, coupled with further advancements to the software engineering
discipline itself.

Program vs. software product

Programs are developed by individuals for their personal use. They are
therefore, small in size and have limited functionality but software products are
extremely large. In case of a program, the programmer himself is the sole user
but on the other hand, in case of a software product, most users are not

involved with the development. In case of a program, a single developer is
involved but in case of a software product, a large number of developers are
involved. For a program, the user interface may not be very important, because
the programmer is the sole user. On the other hand, for a software product,
user interface must be carefully designed and implemented because developers
of that product and users of that product are totally different. In case of a
program, very little documentation is expected, but a software product must be
well documented. A program can be developed according to the programmer’s
individual style of development, but a software product must be developed
using the accepted software engineering principles.

Basics of Software Life

Cycle and Waterfall

Model
Specific Instructional Objectives

At the end of this lesson the student will be able to:

• Explain what is a life cycle model.

• Explain what problems would occur if no life cycle model is followed.

• Identify the different software life cycle models.

• Identify the different phases of the classical waterfall model.

• Identify the activities undertaken in each phase.

• Identify the shortcomings of the classical waterfall model.

• Identify the phase-entry and phase-exit criteria of each phase.

Life cycle model

A software life cycle model (also called process model) is a descriptive and
diagrammatic representation of the software life cycle. A life cycle model
represents all the activities required to make a software product transit through
its life cycle phases. It also captures the order in which these activities are to be
undertaken. In other words, a life cycle model maps the different activities
performed on a software product from its inception to retirement. Different life
cycle models may map the basic development activities to phases in different
ways. Thus, no matter which life cycle model is followed, the basic activities are
included in all life cycle models though the activities may be carried out in
different orders in different life cycle models. During any life cycle phase, more
than one activity may also be carried out. For example, the design phase might

consist of the structured analysis activity followed by the structured design
activity.

The need for a software life cycle model

The development team must identify a suitable life cycle model for the particular
project and then adhere to it. Without using of a particular life cycle model the
development of a software product would not be in a systematic and disciplined
manner. When a software product is being developed by a team there must be a
clear understanding among team members about when and what to do.
Otherwise it would lead to chaos and project failure. This problem can be
illustrated by using an example. Suppose a software development problem is
divided into several parts and the parts are assigned to the team members. From
then on, suppose the team members are allowed the freedom to develop the
parts assigned to them in whatever way they like. It is possible that one member
might start writing the code for his part, another might decide to prepare the test
documents first, and some other engineer might begin with the design phase of
the parts assigned to him. This would be one of the perfect recipes for project
failure.

A software life cycle model defines entry and exit criteria for every
phase. A phase can start only if its phase-entry criteria have been satisfied. So
without software life cycle model the entry and exit criteria for a phase cannot be
recognized. Without software life cycle models (such as classical waterfall model,
iterative waterfall model, prototyping model, evolutionary model, spiral model
etc.) it becomes difficult for software project managers to monitor the progress of
the project.

Different software life cycle models

Many life cycle models have been proposed so far. Each of them has some
advantages as well as some disadvantages. A few important and commonly
used life cycle models are as follows:

▪ Classical Waterfall Model

▪ Iterative Waterfall Model

▪ Prototyping Model

▪ Evolutionary Model

▪ Spiral Model

Different phases of the classical waterfall model

The classical waterfall model is intuitively the most obvious way to develop

Integration &
System Testing

Maintenance

software. Though the classical waterfall model is elegant and intuitively obvious,
it is not a practical model in the sense that it can not be used in actual software
development projects. Thus, this model can be considered to be a theoretical
way of developing software. But all other life cycle models are essentially derived
from the classical waterfall model. So, in order to be able to appreciate other life
cycle models it is necessary to learn the classical waterfall model.

Classical waterfall model divides the life cycle into the following phases as

shown in fig.2.1:

▪ Feasibility Study

▪ Requirements Analysis and Specification

▪ Design

▪ Coding and Unit Testing

▪ Integration and System Testing

▪ Maintenance

Fig 2.1: Classical Waterfall Model

Activities in each phase of the life cycle

• Activities undertaken during feasibility study: -

The main aim of feasibility study is to determine whether it would be
financially and technically feasible to develop the product.

Design

Requirements Analysis &
Specification

▪ At first project managers or team leaders try to have a rough
understanding of what is required to be done by visiting the client
side. They study different input data to the system and output data
to be produced by the system. They study what kind of processing
is needed to be done on these data and they look at the various
constraints on the behavior of the system.

▪ After they have an overall understanding of the problem they
investigate the different solutions that are possible. Then they
examine each of the solutions in terms of what kind of resources
required, what would be the cost of development and what would
be the development time for each solution.

▪ Based on this analysis they pick the best solution and determine
whether the solution is feasible financially and technically. They
check whether the customer budget would meet the cost of the

product and whether they have sufficient technical expertise in the
area of development.

The following is an example of a feasibility study undertaken by an
organization. It is intended to give you a feel of the activities and issues
involved in the feasibility study phase of a typical software project.

Case Study

A mining company named Galaxy Mining Company Ltd. (GMC) has
mines located at various places in India. It has about fifty different mine
sites spread across eight states. The company employs a large
number of mines at each mine site. Mining being a risky profession,
the company intends to operate a special provident fund, which would
exist in addition to the standard provident fund that the miners already
enjoy. The main objective of having the special provident fund (SPF)
would be quickly distribute some compensation before the standard
provident amount is paid. According to this scheme, each mine site
would deduct SPF installments from each miner every month and
deposit the same with the CSPFC (Central Special Provident Fund
Commissioner). The CSPFC will maintain all details regarding the SPF
installments collected from the miners. GMC employed a reputed
software vendor Adventure Software Inc. to undertake the task of
developing the software for automating the maintenance of SPF
records of all employees. GMC realized that besides saving manpower
on bookkeeping work, the software would help in speedy settlement of
claim cases. GMC indicated that the amount it can afford for this
software to be developed and installed is Rs. 1 million.

Adventure Software Inc. deputed their project manager to carry out the

feasibility study. The project manager discussed the matter with the top
managers of GMC to get an overview of the project. He also discussed
the issues involved with the several field PF officers at various mine
sites to determine the exact details of the project. The project manager
identified two broad approaches to solve the problem. One was to
have a central database which could be accessed and updated via a
satellite connection to various mine sites. The other approach was to
have local databases at each mine site and to update the central
database periodically through a dial-up connection. These periodic
updates could be done on a daily or hourly basis depending on the
delay acceptable to GMC in invoking various functions of the software.
The project manager found that the second approach was very
affordable and more fault-tolerant as the local mine sites could still
operate even when the communication link to the central database
temporarily failed. The project manager quickly analyzed the database
functionalities required, the user-interface issues, and the software

handling communication with the mine sites. He arrived at a cost to
develop from the analysis. He found that the solution involving
maintenance of local databases at the mine sites and periodic updating
of a central database was financially and technically feasible. The
project manager discussed his solution with the GMC management
and found that the solution was acceptable to them as well.

• Activities undertaken during requirements analysis and
specification: -

The aim of the requirements analysis and specification phase is to

understand the exact requirements of the customer and to document them
properly. This phase consists of two distinct activities, namely

▪ Requirements gathering and analysis, and
▪ Requirements specification

The goal of the requirements gathering activity is to collect all relevant
information from the customer regarding the product to be developed.
This is done to clearly understand the customer requirements so that
incompleteness and inconsistencies are removed.

The requirements analysis activity is begun by collecting all relevant
data regarding the product to be developed from the users of the
product and from the customer through interviews and discussions. For
example, to perform the requirements analysis of a business
accounting software required by an organization, the analyst might
interview all the accountants of the organization to ascertain their
requirements. The data collected from such a group of users usually
contain several contradictions and ambiguities, since each user

typically has only a partial and incomplete view of the system.
Therefore it is necessary to identify all ambiguities and contradictions
in the requirements and resolve them through further discussions with
the customer. After all ambiguities, inconsistencies, and
incompleteness have been resolved and all the requirements properly
understood, the requirements specification activity can start. During
this activity, the user requirements are systematically organized into a
Software Requirements Specification (SRS) document.

The customer requirements identified during the requirements
gathering and analysis activity are organized into a SRS document.
The important components of this document are functional
requirements, the nonfunctional requirements, and the goals of
implementation.

• Activities undertaken during design: -

The goal of the design phase is to transform the requirements
specified in the SRS document into a structure that is suitable for
implementation in some programming language. In technical terms, during
the design phase the software architecture is derived from the SRS
document. Two distinctly different approaches are available: the traditional
design approach and the object-oriented design approach.

▪ Traditional design approach

Traditional design consists of two different activities; first a structured
analysis of the requirements specification is carried out where the
detailed structure of the problem is examined. This is followed by a
structured design activity. During structured design, the results of
structured analysis are transformed into the software design.

▪ Object-oriented design approach

In this technique, various objects that occur in the problem domain and
the solution domain are first identified, and the different relationships
that exist among these objects are identified. The object structure is
further refined to obtain the detailed design.

• Activities undertaken during coding and unit testing:-

The purpose of the coding and unit testing phase (sometimes
called the implementation phase) of software development is to translate
the software design into source code. Each component of the design is
implemented as a program module. The end-product of this phase is a set
of program modules that have been individually tested.

During this phase, each module is unit tested to determine the

correct working of all the individual modules. It involves testing each
module in isolation as this is the most efficient way to debug the errors
identified at this stage.

• Activities undertaken during integration and system testing: -

Integration of different modules is undertaken once they have been
coded and unit tested. During the integration and system testing phase,
the modules are integrated in a planned manner. The different modules
making up a software product are almost never integrated in one shot.
Integration is normally carried out incrementally over a number of steps.
During each integration step, the partially integrated system is tested and

a set of previously planned modules are added to it. Finally, when all the
modules have been successfully integrated and tested, system testing is
carried out. The goal of system testing is to ensure that the developed
system conforms to its requirements laid out in the SRS document.
System testing usually consists of three different kinds of testing activities:

▪ α – testing: It is the system testing performed by the

development team.
▪ β – testing: It is the system testing performed by a friendly

set of customers.
▪ acceptance testing: It is the system testing performed by the

customer himself after the product delivery to determine
whether to accept or reject the delivered product.

System testing is normally carried out in a planned manner according to
the system test plan document. The system test plan identifies all testing-
related activities that must be performed, specifies the schedule of testing,
and allocates resources. It also lists all the test cases and the expected
outputs for each test case.

• Activities undertaken during maintenance: -

Maintenance of a typical software product requires much more than
the effort necessary to develop the product itself. Many studies carried out
in the past confirm this and indicate that the relative effort of development
of a typical software product to its maintenance effort is roughly in the
40:60 ratio. Maintenance involves performing any one or more of the
following three kinds of activities:

▪ Correcting errors that were not discovered during the product

development phase. This is called corrective maintenance.

▪ Improving the implementation of the system, and enhancing the
functionalities of the system according to the customer’s

requirements. This is called perfective maintenance.

▪ Porting the software to work in a new environment. For example,
porting may be required to get the software to work on a new
computer platform or with a new operating system. This is called
adaptive maintenance.

Shortcomings of the classical waterfall model

The classical waterfall model is an idealistic one since it assumes that no
development error is ever committed by the engineers during any of the life
cycle phases. However, in practical development environments, the

engineers do commit a large number of errors in almost every phase of the
life cycle. The source of the defects can be many: oversight, wrong
assumptions, use of inappropriate technology, communication gap among the
project engineers, etc. These defects usually get detected much later in the
life cycle. For example, a design defect might go unnoticed till we reach the
coding or testing phase. Once a defect is detected, the engineers need to go
back to the phase where the defect had occurred and redo some of the work
done during that phase and the subsequent phases to correct the defect and
its effect on the later phases. Therefore, in any practical software
development work, it is not possible to strictly follow the classical waterfall
model.

Phase-entry and phase-exit criteria of each phase

At the starting of the feasibility study, project managers or team leaders try to
understand what is the actual problem by visiting the client side. At the end of
that phase they pick the best solution and determine whether the solution is
feasible financially and technically.

At the starting of requirements analysis and specification phase the required
data is collected. After that requirement specification is carried out. Finally,
SRS document is produced.

At the starting of design phase, context diagram and different levels of DFDs
are produced according to the SRS document. At the end of this phase
module structure (structure chart) is produced.

During the coding phase each module (independently compilation unit) of the
design is coded. Then each module is tested independently as a stand-alone
unit and debugged separately. After this each module is documented
individually. The end product of the implementation phase is a set of program
modules that have been tested individually but not tested together.

After the implementation phase, different modules which have been tested
individually are integrated in a planned manner. After all the modules have
been successfully integrated and tested, system testing is carried out.

Software maintenance denotes any changes made to a software product after
it has been delivered to the customer. Maintenance is inevitable for almost
any kind of product. However, most products need maintenance due to the
wear and tear caused by use.
Prototyping and Spiral Life

Cycle Models

Specific Instructional Objectives

At the end of this lesson the student will be able to:

• Explain what a prototype is.

• Explain why and when a prototype needs to be developed during software
development.

• Identify the situations in which one would prefer to build a prototype.

• State the activities carried out during each phase of a spiral model.

• Identify circumstances under which spiral model should be used for
software development.

• Tailor a development process to a specific project.

Prototype

A prototype is a toy implementation of the system. A prototype usually exhibits
limited functional capabilities, low reliability, and inefficient performance
compared to the actual software. A prototype is usually built using several
shortcuts. The shortcuts might involve using inefficient, inaccurate, or dummy
functions. The shortcut implementation of a function, for example, may produce
the desired results by using a table look-up instead of performing the actual
computations. A prototype usually turns out to be a very crude version of the
actual system.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the

input data formats, messages, reports, and the interactive dialogues to the
customer. This is a valuable mechanism for gaining better understanding of the
customer’s needs:

• how the screens might look like

• how the user interface would behave

• how the system would produce outputs

This is something similar to what the architectural designers of a building do; they
show a prototype of the building to their customer. The customer can evaluate
whether he likes it or not and the changes that he would need in the actual
product. A similar thing happens in the case of a software product and its
prototyping model.

Another reason for developing a prototype is that it is impossible to get the
perfect product in the first attempt. Many researchers and engineers advocate
that if you want to develop a good product you must plan to throw away the first
version. The experience gained in developing the prototype can be used to
develop the final product.

A prototyping model can be used when technical solutions are unclear to the
development team. A developed prototype can help engineers to critically
examine the technical issues associated with the product development. Often,
major design decisions depend on issues like the response time of a hardware
controller, or the efficiency of a sorting algorithm, etc. In such circumstances, a
prototype may be the best or the only way to resolve the technical issues.

Examples for prototype model

A prototype of the actual product is preferred in situations such as:

• user requirements are not complete

• technical issues are not clear

Let’s see an example for each of the above category.

Example 1: User requirements are not complete

In any application software like billing in a retail shop, accounting in
a firm, etc the users of the software are not clear about the different
functionalities required. Once they are provided with the prototype
implementation, they can try to use it and find out the missing
functionalities.

Example 2: Technical issues are not clear

Suppose a project involves writing a compiler and the development
team has never written a compiler.

In such a case, the team can consider a simple language, try to
build a compiler in order to check the issues that arise in the process and
resolve them. After successfully building a small compiler (prototype), they
would extend it to one that supports a complete language.

Spiral model

The Spiral model of software development is shown in fig. 2.2. The diagrammatic
representation of this model appears like a spiral with many loops. The exact
number of loops in the spiral is not fixed. Each loop of the spiral represents a
phase of the software process. For example, the innermost loop might be
concerned with feasibility study. The next loop with requirements specification,
the next one with design, and so on. Each phase in this model is split into four
sectors (or quadrants) as shown in fig. 2.2. The following activities are carried out
during each phase of a spiral model.

- First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of
the phase.

• Examine the risks associated with these objectives.

- Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk
that the requirements are inappropriate, a prototype system may be
developed.

Fig. 2.2: Spiral Model

- Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving
the identified risks.

- Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the
next iteration around the spiral.

• Progressively more complete version of the software gets built with
each iteration around the spiral.

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle
models. Risk handling is inherently built into this model. The spiral model is
suitable for development of technically challenging software products that are
prone to several kinds of risks. However, this model is much more complex than
the other models – this is probably a factor deterring its use in ordinary projects.

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other
life cycle models as embellishments of this model. However, the classical
waterfall model can not be used in practical development projects, since this
model supports no mechanism to handle the errors committed during any of the
phases.

This problem is overcome in the iterative waterfall model. The iterative

waterfall model is probably the most widely used software development model
evolved so far. This model is simple to understand and use. However, this model
is suitable only for well-understood problems; it is not suitable for very large
projects and for projects that are subject to many risks.

The prototyping model is suitable for projects for which either the user

requirements or the underlying technical aspects are not well understood. This
model is especially popular for development of the user-interface part of the
projects.

The evolutionary approach is suitable for large problems which can be
decomposed into a set of modules for incremental development and delivery.
This model is also widely used for object-oriented development projects. Of
course, this model can only be used if the incremental delivery of the system is
acceptable to the customer.

The spiral model is called a meta model since it encompasses all other life

cycle models. Risk handling is inherently built into this model. The spiral model is
suitable for development of technically challenging software products that are
prone to several kinds of risks. However, this model is much more complex than
the other models – this is probably a factor deterring its use in ordinary projects.

The different software life cycle models can be compared from the

viewpoint of the customer. Initially, customer confidence in the development team
is usually high irrespective of the development model followed. During the
lengthy development process, customer confidence normally drops off, as no
working product is immediately visible. Developers answer customer queries
using technical slang, and delays are announced. This gives rise to customer

resentment. On the other hand, an evolutionary approach lets the customer
experiment with a working product much earlier than the monolithic approaches.
Another important advantage of the incremental model is that it reduces the
customer’s trauma of getting used to an entirely new system. The gradual
introduction of the product via incremental phases provides time to the customer
to adjust to the new product. Also, from the customer’s financial viewpoint,
incremental development does not require a large upfront capital outlay. The
customer can order the incremental versions as and when he can afford them.

The following questions have been designed to test the
objectives identified for this module:

1. Identify the definite stages through which a software product undergoes
during its lifetime.

Ans.: - The definite stages through which a software product undergoes during
its lifetime are as follows:

▪ Feasibility Study
▪ Requirements Analysis and Specification
▪ Design
▪ Coding and Unit Testing
▪ Integration and System Testing, and
▪ Maintenance

2. Explain the problems that might be faced by an organization if it does
not follow any software life cycle model.

Ans.: - The development team must identify a suitable life cycle model for the
particular project and then adhere to it. Without using of a particular life
cycle model the development of a software product would not be in a
systematic and disciplined manner. When a software product is being
developed by a team there must be a clear understanding among team

Coding & Unit
Testing

Design

Requirements Analysis &
Specification

Integration &
System Testing

Maintenance

members about when and what to do. Otherwise it would lead to chaos
and project failure. This problem can be illustrated by using an example.
Suppose a software development problem is divided into several parts
and the parts are assigned to the team members. From then on,
suppose the team members are allowed the freedom to develop the
parts assigned to them in whatever way they like. It is possible that one
member might start writing the code for his part, another might decide to
prepare the test documents first, and some other engineer might begin
with the design phase of the parts assigned to him. This would be one of
the perfect recipes for project failure.

A software life cycle model defines entry and exit criteria for every
phase. A phase can start only if its phase-entry criteria have been
satisfied. So without software life cycle model the entry and exit criteria
for a phase cannot be recognized. Without software life cycle models
(such as classical waterfall model, iterative waterfall model, prototyping
model, evolutionary model, spiral model etc.) it becomes difficult for
software project managers to monitor the progress of the project.

3. Identify six different phases of a classical waterfall model.

Ans.: - The classical waterfall model is intuitively the most obvious way to
develop software. Though the classical waterfall model is elegant and
intuitively obvious, it is not a practical model in the sense that it can not
be used in actual software development projects. Thus, this model can
be considered to be a theoretical way of developing software. But all
other life cycle models are essentially derived from the classical waterfall
model. So, in order to be able to appreciate other life cycle models it is
necessary to learn the classical waterfall model.

Classical waterfall model divides the life cycle into the following

phases as shown in fig. 2.1(Classical Waterfall Model):

Feasibility Study

▪ Feasibility Study
▪ Requirements Analysis and Specification
▪ Design
▪ Coding and Unit Testing
▪ Integration and System Testing, and
▪ Maintenance

4. Identify two basic roles of a system analyst.

Ans.:- For performing requirements analysis activity system analyst collects all

relevant data regarding the product to be developed from the users of
the product and from the customer through interviews and discussions.
For example, to perform the requirements analysis of a business
accounting software required by an organization, the analyst might
interview all the accountants of the organization to ascertain their
requirements. The data collected from such a group of users usually
contain several contradictions and ambiguities, since each user typically
has only a partial and incomplete view of the system. Therefore a
system analyst identifies all ambiguities and contradictions in the
requirements and resolves them through further discussions with the
customer. After all ambiguities, inconsistencies, and incompleteness
have been resolved and all the requirements properly understood, the
system analyst starts requirements specification activity. During this
activity, the user requirements are systematically organized into a
Software Requirements Specification (SRS) document.

5. Differentiate between structured analysis and structured design.

Ans.: - Traditional design consists of two different activities; first a structured

analysis of the requirements specification is carried out where the
detailed structure of the problem is examined. This is followed by a
structured design activity. During structured design, the results of
structured analysis are transformed into the software design.

6. Identify at least three activities undertaken in an object-oriented software
design approach.

Ans.: - In this technique, various objects that occur in the problem domain and
the solution domain are first identified, and the different relationships that
exist among these objects are identified. The object structure is further
refined to obtain the detailed design.

7. State why it is a good idea to test a module in isolation from other
modules.

Ans.: - During unit testing, each module is unit tested to determine the correct
working of all the individual modules. It involves testing each module in

isolation as this is the most efficient way to debug the errors identified at
this stage. So it is always a good idea to test a module in isolation from
other modules.

8. Identify why different modules making up a software product are almost
never integrated in one shot.

Ans.: - Integration of different modules is undertaken once they have been
coded and unit tested. During the integration and system testing phase,
the modules are integrated in a planned manner. The different modules
making up a software product are almost never integrated in one shot.
Integration is normally carried out incrementally over a number of steps.
During each integration step, the partially integrated system is tested
and a set of previously planned modules are added to it. Finally, when all
the modules have been successfully integrated and tested, system
testing is carried out.

9. Mention at least two reasons as to why classical waterfall model can be
considered impractical and cannot be used in real projects.

Ans.: - The classical waterfall model is an idealistic one since it assumes that no
development error is ever committed by the engineers during any of the
life cycle phases. However, in practical development environments, the
engineers do commit a large number of errors in almost every phase of
the life cycle. The source of the defects can be many: oversight, wrong
assumptions, use of inappropriate technology, communication gap
among the project engineers, etc. These defects usually get detected
much later in the life cycle. For example, a design defect might go
unnoticed till we reach the coding or testing phase. Once a defect is
detected, the engineers need to go back to the phase where the defect
had occurred and redo some of the work done during that phase and the
subsequent phases to correct the defect and its effect on the later
phases. Therefore, in any practical software development work, it is not
possible to strictly follow the classical waterfall model.

10. Explain what is a software prototype.

Ans.: - A prototype is a toy implementation of the system. A prototype usually
exhibits limited functional capabilities, low reliability, and inefficient
performance compared to the actual software. A prototype is usually
built using several shortcuts. The shortcuts might involve using
inefficient, inaccurate, or dummy functions. The shortcut implementation
of a function, for example, may produce the desired results by using a
table look-up instead of performing the actual computations. A prototype
usually turns out to be a very crude version of the actual system.

11. Identify three reasons for the necessity of developing a prototype
during software development.

Ans.: - There are several uses of a prototype. An important purpose is to
illustrate the input data formats, messages, reports, and the interactive
dialogues to the customer. This is a valuable mechanism for gaining
better understanding of the customer’s needs:

▪ how screens might look like

▪ how the user interface would behave

▪ how the system would produce outputs

This is something similar to what the architectural designers of a
building do; they show a prototype of the building to their customer. The
customer can evaluate whether he likes it or not and the changes that he
would need in the actual product. A similar thing happens in the case of
a software product and its prototyping model.

Another reason for developing a prototype is that it is impossible to get
the perfect product in the first attempt. Many researchers and engineers
advocate that if you want to develop a good product you must plan to
throw away the first version. The experience gained in developing the
prototype can be used to develop the final product.

12. Identify when does a prototype need to develop.

Ans.: - A prototype can be developed when technical solutions are unclear to

the development team. A developed prototype can help engineers to
critically examine the technical issues associated with the product
development. Often, major design decisions depend on issues like the
response time of a hardware controller, or the efficiency of a sorting
algorithm, etc. In such circumstances, a prototype may be the best or the
only way to resolve the technical issues.

13. Identify at least two activities carried out during each phase of a spiral
model.

Ans.: - The Spiral model of software development is shown in fig. 2.2. The
diagrammatic representation of this model appears like a spiral with
many loops. The exact number of loops in the spiral is not fixed. Each
loop of the spiral represents a phase of the software process. For
example, the innermost loop might be concerned with feasibility study.
The next loop with requirements specification, the next one with design,
and so on. Each phase in this model is split into four sectors (or
quadrants) as shown in fig. 2.2. The following activities are carried out
during each phase of a spiral model.

• First quadrant (Objective Setting)

▪ During the first quadrant, it is needed to identify the objectives of

the phase.
▪ Examine the risks associated with these objectives.

• Second Quadrant (Risk Assessment and Reduction)

▪ A detailed analysis is carried out for each identified project risk.
▪ Steps are taken to reduce the risks. For example, if there is a

risk that the requirements are inappropriate, a prototype system
may be developed.

• Third Quadrant (Development and Validation)

▪ Develop and validate the next level of the product after resolving
the identified risks.

• Fourth Quadrant (Review and Planning)

▪ Review the results achieved so far with the customer and plan
the next iteration around the spiral.

▪ Progressively more complete version of the software gets built
with each iteration around the spiral.

14. Write down the two advantages of using spiral model.

Ans.: - The spiral model is called a meta model since it encompasses all other
life cycle models. Risk handling is inherently built into this model. The
spiral model is suitable for development of technically challenging
software products that are prone to several kinds of risks. However, this
model is much more complex than the other models – this is probably a
factor deterring its use in ordinary projects.

For the following, mark all options which are true.

1. In a classical waterfall model, which phase precedes the design phase ?
□ Coding and unit testing
□ Maintenance
□ Requirements analysis and specification √
□ Feasibility study

2. Among development phases of software life cycle, which phase typically
consumes the maximum effort?
□ Requirements analysis and specification
□ Design
□ Coding
□ Testing √

3. Among all the phases of software life cycle, which phase consumes the
maximum effort?
□ Design
□ Maintenance √
□ Testing
□ Coding

4. In the classical waterfall model during which phase is the Software

Requirement Specification (SRS) document produced?
□ Design
□ Maintenance
□ Requirements analysis and specification √

□ Coding

5. Which phase is the last development phase of a classical waterfall
software life cycle?
□ Design
□ Maintenance
□ Testing √
□ Coding

6. Which development phase in classical waterfall life cycle immediately
follows coding phase?
□ Design
□ Maintenance
□ Testing √
□ Requirement analysis and specification

7. Out of the following life cycle models which one can be considered as the

most general model, and the others as specialization of it?
□ Classical Waterfall Model √
□ Iterative Waterfall Model
□ Prototyping Model
□ Spiral Model

Mark the following as either True or False. Justify your answer.

1. Evolutionary life cycle model is ideally suited for development of very small
software products typically requiring a few months of development effort.

Ans.: - False.

Explanation: - The Evolutionary model is very useful for very large problems
where it becomes easier to find modules for incremental implementation.

2. Prototyping life cycle model is the most suitable one for undertaking a software

development project susceptible to schedule slippage.

Ans.: - False.

Explanation: - The prototype model is suitable for projects whose user
requirements or the underlying technical aspects are not well understood.

3. Spiral life cycle model is not suitable for products that are vulnerable to large

number of risks.

Ans.: - False.

Explanation: - The spiral model is suitable for development of technically challenging software
products that are prone to

